
HowWell Are Regular Expressions Tested in the Wild?
Peipei Wang

Department of Computer Science
North Carolina State University

Raleigh, NC, USA
pwang7@ncsu.edu

Kathryn T. Stolee
Department of Computer Science
North Carolina State University

Raleigh, NC, USA
ktstolee@ncsu.edu

ABSTRACT
Developers report testing their regular expressions less than the
rest of their code. In this work, we explore how thoroughly tested
regular expressions are by examining open source projects.

Using standard metrics of coverage, such as line and branch cov-
erage, gives an incomplete picture of the test coverage of regular
expressions. We adopt graph-based coverage metrics for the DFA
representation of regular expressions, providing fine-grained test
coverage metrics. Using over 15,000 tested regular expressions in
1,225 Java projects onGitHub, wemeasure node, edge, and edge-pair
coverage. Our results show that only 17% of the regular expressions
in the repositories are tested at all. For those that are tested, the
median number of test inputs is two. For nearly 42% of the tested
regular expressions, only one test input is used. Average node and
edge coverage levels on the DFAs for tested regular expressions
are 59% and 29%, respectively. Due to the lack of testing of regular
expressions, we explore whether a string generation tool for reg-
ular expressions, Rex, achieves high coverage levels. With some
exceptions, we found that tools such as Rex can be used to write
test inputs with similar coverage to the developer tests.

CCS CONCEPTS
• Software and its engineering → Software testing and de-
bugging; Language features;

KEYWORDS
Regular expressions, Test coverage metrics, Deterministic Finite
Automaton

ACM Reference Format:
PeipeiWang and Kathryn T. Stolee. 2018. HowWell Are Regular Expressions
Tested in the Wild?. In Proceedings of the 26th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engi-
neering (ESEC/FSE ’18), November 4–9, 2018, Lake Buena Vista, FL, USA.ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3236024.3236072

1 INTRODUCTION
A survey of professional developers reveals that they test their
regular expressions less than the rest of their code [9]. In this work,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5573-5/18/11. . . $15.00
https://doi.org/10.1145/3236024.3236072

we explore how thoroughly tested regular expressions are by ex-
amining open source projects.

Traditional code coverage criteria, are rather coarse-grained
when it comes to regular expressions. Statement coverage requires
the regular expression to be invoked at least once. If the regular
expression call site appears in a predicate, branch coverage requires
that the regular expression is tested with at minimum two strings,
one in the language of the regular expression and one not. How-
ever, these metrics ignore the complex structure represented by a
regular expression. We propose to use test metrics for graph-based
coverage [2] over the DFA representation of regular expressions.

Regular expression tools can help support developers in their
creation and testing of regular expressions. These tools either auto-
matically generate strings according to the given regular expres-
sions [20, 21, 28, 33] or automatically generate regular expressions
according to the given list of strings [5, 26]. Rex [33] is a tool for
analyzing regular expressions through symbolic analysis. Given a
regular expression R, Rex uses the Z3 [15] SMT solver to generate
members of the language by treating it as a satisfiability problem.
Like automatic test case generation tools, integrating these gener-
ated results into software testing can help automate the process,
but it is not clear how well covered the regular expressions would
be compared to developer-written tests.

In this work, we focus on empirically measuring how well tested
regular expressions are and further explore the potential for using
existing tools, specifically Rex, to improve the test coverage. First,
we measure the test coverage of regular expressions in the wild
based on a set of 1,225 Java projects on GitHub containing 15,096
tested regular expressions. Second, we measure the test coverage
of strings generated by Rex and compare the coverage achieved
against the strings generated by developers in the GitHub projects.
Our contributions are:
• Application of graph-based metrics for test coverage of regu-
lar expressions: node coverage, edge coverage, and edge-pair
coverage (Section 3).
• Test coverage evaluation of 15,096 regular expressions based
on nearly 900,000 input strings from 1,225 Java projects from
GitHub (RQ1).
• Evaluation of test coverage achieved by the Rex symbolic
analysis tool for regular expressions (RQ2).

Our main findings are:
• Of 18,426 call sites for three pattern matching API meth-
ods identified statically in 1,225 GitHub projects, only 3,093
(16.8%) are ever executed by test suites (RQ1).
• Of 15,096 regular expressions captured during test suite ex-
ecution of 1,225 GitHub projects, 10,970 (72.7%) use only
failing inputs (4,941) or only matching inputs (6,029) (RQ1).

668

https://doi.org/10.1145/3236024.3236072
https://doi.org/10.1145/3236024.3236072

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Peipei Wang and Kathryn T. Stolee

• The Rex-generated test inputs achieve similar coverage levels
to the developer-written tests (RQ2).

2 BACKGROUND AND MOTIVATION
A regular expression is a sequence of characters that defines a search
pattern. The set of strings matched by the regular expression is
a language. That is, a regular expression R represents a language
L(R) over an alphabet Σ, where L(R) is a (possibly infinite) set of
strings. For a given language, there are many regular expressions
that can describe it. A regular expression can be represented as a
string of tokens, a finite state automaton in deterministic (DFA)
form, or in non-deterministic (NFA) form.

In this work, we explore test coverage metrics over the DFA
representing a regular expression. This requires three informal ex-
plorations to ensure feasibility and assess the potential impact. First,
we explore the potential of building DFAs from regular expressions
by analyzing regular expressions collected from an existing Python
dataset [9] and testing them for regularity [32]. Second, we show
intuitively how existing coverage metrics are insufficient. Third,
to motivate the structural coverage metrics, we explore whether
faults can lie along untested paths in a DFA.

2.1 How Regular Are Regular Expressions?
Regular expressions in source code can contain non-regular fea-
tures, such as backreferences. An example is the regular expression
([a-z]+\1), which matches a repeated word in a string, such as
“appleapple". Building a DFA is not possible for this since this regu-
lar expression is non-regular. For regular expressions in source code
that are indeed regular, we can build DFAs and measure coverage
based on a test suite. Here, we are testing how many of the regular
expressions in the wild are truly regular.

We explore an existing and publicly available dataset of 13,597
regular expressions scraped from Python projects on GitHub. To
test for regularity, we use an empirical approach since the ability to
build a DFA from a regular expression implies that it is regular [32].
Of the 13,597 Python regular expressions, 13,029 (95.9%) are regular
in that we were successful in building DFAs for each using the
RE2 [14] regular expression processing engine. For the remaining
568, we investigated each by hand. One regular expression was
removed because its repetition exceeds the RE2 limits. While it may
indeed be regular, to be conservative, we mark it as non-regular. An
additional 81 contained comments within the regular expressions,
which are unsupported in RE2, so these were also assumed to be
non-regular; 128 contained unsupported characters. The remaining
368 were non-regular as they contained backreferences.

In the end, with nearly 96% of the regular expressions being reg-
ular (as a low estimate), we conclude that most regular expressions
found in the wild are regular and thus can be modeled with DFAs.

2.2 Limitations of Code Coverage
In this work, we posit that code coverage metrics [2, Chapter 2] [24,
31, 37] such as statement, branch, and path, are too coarse-grained
for regular expressions. Statement coverage requires that the code
containing the regular expression is reached, leading to a minimum
of one test input for the regular expression. If the regular expression

is in a statement where the control flow is dependent on the match-
ing outcome, branch coverage requires that the regular expression
have at least two inputs, one that evaluates to true and another that
evaluates to false.

Consider the following Java code snippet. The call site for method
Pattern.matches is on line 1. The regular expression is -d|--data.
1 if(Pattern.matches("-d|--data",strInput)){

2 System.out.println("YES");

3 ...

4 }else{

5 System.out.println("NO");

6 ...

7 }

Statement coverage of the regular expression requires that line 1
is executed and branch coverage requires two test inputs, one to
cover the true branch and one to cover the false branch. Using
coverage metrics based on the DFA representation of the regular
expression, on the other hand, would require 1) each branch to be
covered, and 2) each case in the regular expression, “-d" and “--data",
to be covered. Such metrics measure test coverage of the regular
expression’s control flow (i.e., the DFA) just like branch coverage
measures test coverage of source code’s control flow graph.

Existing tools and techniques can direct test input generation
toward areas of untested paths. One technique among these is sym-
bolic execution [3, 8, 18, 22, 25], and Rex [33] has been developed
for symbolic analysis of regular expressions. However, Rex focuses
solely on the matching behavior [33], which limits its ability to
cover the false branch in the Java example above. Hampi [20, 21]
and brics [28] similarly only generates passing strings. While useful,
there are no guarantees of structural coverage.

2.3 DFA Coverage Example
Bug reports related to regular expressions abound. A search for
“regex OR regular expression” in GitHub yields over 555,000 issues,
with 22% of those still being open. One in particular illustrates how
coverage metrics on the DFA could have brought a particular bug
to the developer’s attention sooner. This bug report1 describes an
issue with the regular expression \d+\.d+ in the NAR plugin for
Maven. Figure 1 shows the DFA of this regular expression built
using RE2 [14], and we take this opportunity to describe the DFA
notation used throughout this paper2.

Node 0 is the start-state, indicated by the incoming arrow. Nodes
with double-circles are accept states, such as Node 4. Node e is
the error state, denoting a mismatch. The edges are labeled with
transitions, often using syntactic sugar for ease of interpretation.
The edge −→01 is traversed when a digit from 0-9 is read. If any other
character is read at Node 0, (i.e., not 0-9), edge −→0e is traversed.
There is a self-loop on Node 1 for digits 0-9. If the period character
is read from Node 1, then edge −→12 is traversed.

In RE2, when reading an input string, byte [256], is added as a
text-end marker. For example, the input string “0.0” is transformed
to the byte stream [48 46 48 256], as [48] is the byte for ‘0’, [46]
is for ‘.’, and [256]marks the end of the string. Byte [256] is matched
on edges ‘[0-256]’, ‘not 0-9’, ‘not d’, or ‘any except 0-9 and .’.

1https://github.com/maven-nar/nar-maven-plugin/issues/228
2The regular expression in the bug is triggered by Matcher.find()with a ManyMatch
DFA. For simplicity, we show the FullMatch DFA, a subgraph of the ManyMatch.

669

https://github.com/maven-nar/nar-maven-plugin/issues/228

How Well Are Regular Expressions Tested in the Wild? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

0

e

not 0-9

1

0-9

4
[0-256]

 any except 0-9 and .0-9

2
. not d

3
d

not d

5

d not d
d

Figure 1: Full-match DFA for regular expression: \d+\.d+

The bug report mentions that the regular expression \d+\.d+ is
buggy and the patch adds an escape before the second d, \d+\.\d+.
The intended behavior is to match input strings with one or more
digits, followed by a period, followed by one or more digits.

In this work, the structural metrics could reveal this fault. With
the DFA in Figure 1, when Node 3 is reached, the fault may be
revealed. Input "0.d" traverses 0→ 1→ 2→ 3→ 4 and ends in an
accept state, when it should fail. However, input "0.d3" traverses
0 → 1 → 2 → 3 → 4 → e and ends in an error state, as expected.
Covering edge −→2e may also reveal the fault; input "2.3" traverses
0 → 1 → 2 → e and ends in and error state, when it should be
accepted. Requiring coverage of all feasible nodes and edges could
have revealed this fault in the regular expression.

As with code coverage, uncovered artifacts alert the programmer
to untested behavior. Such coverage information can indicate that
a regular expression is not well tested and for some inputs it may
not behave as intended, as is the case here.

3 TEST COVERAGE METRICS
We explore fine-grained coverage metrics for regular expressions
based on a DFA representation. The intuition is that since regular
expressions are equivalent to DFAs [32], and 96% of regular expres-
sions in the wild were found to be regular (Section 2.1), then graph
coverage metrics over the DFA can be used to test the behavior
within most regular expressions. We discuss three levels of cov-
erage: Node Coverage (NC), Edge Coverage (EC), and Edge-Pair
Coverage (EPC). These coverage metrics are adopted from graph
coverage metrics proposed by Ammann and Offutt [2, Chapter 7].

3.1 Graph Notation
For ease of exposition, we expand on the traditional definition of
a DFA. In this work, a DFA graph G = {N ,N0,Nm ,Ne ,E} where:
N is the set of all nodes, N0 is the initial node, Nm is the final
matching/accept node, Ne is the final failing/error node, and E is a
set of all edges. For the DFAs in this work, there is only one initial
state, one accept state, and one error state.1

The states in a DFA are the nodes N = {n0,n1, . . . ,nk }. For any
two nodes n1 and n2 such that {n1,n2} ⊆ N , if there is a transition
fromn1 ton2 in DFA, then the edge−−−→n1n2 ∈ E; the start and end-state
of the path may be the same node, as is the case of self-loops. Edge
pairs are defined by paths of length two in the DFA. For example,
if {−−−→n1n2,

−−−→n2n3} ∈ E, we denote the edge pair as −−−−−→n1n2n3. In the case
of self-loops, −−−−−→n2n2n2 is also a valid edge-pair.

Given an input string and a regular expression, the initial node
N0 is visited first. Transitions are taken as each character in the

1In a FullMatch DFA (see Section 5.1), there could be several matching nodes, and only
one accept. We simplified to use only one accept state.

0 e

not 0-9

1
0-9

3
[0-256]

not 0-9

2

0-9 not 0-9
0-9

Figure 2: Full-match DFA from RE2 [14] for the regular ex-
pression \d+. RE2 interprets every string as a byte stream;
the range of bytes is [0-256] where [256] is added to mark
the end of a string. Thus, the input string “2” would be repre-
sented as [50 256] and traverse the following path: 0→ 1→
3. The edges marked 0-9 represent the byte range [48-57];
edges not 0-9 represent the byte ranges [0-47][58-256].

string is consumed. The result of the matching process ends in
either the accept node Nm or the error node Ne . In standard DFAs,
a traversal can end in any node. However, the DFA generation
algorithm used in this work is based on the RE2 tool, which always
ends processing in an explicit matching/accept (Nm) or error (Ne)
state. In this tool, given a regular expression and an input string,
the input string is interpreted as a byte stream, with byte [256]
added to the end to mark the end of the string. Thus, an input string
“2” would be interpreted as [50 256] and the input string “1001”
would be interpreted as [49 48 48 49 256].

As a running example, consider regular expression R = \d+ and
graph G in Figure 2. In G, N = {0, 1, 2, 3,E}, N0 = 0, Nm = 3,
Ne = e , E = {−→0e,−→01,−→12,−→13,−→22,−→23,−→3e}, and
EP = {

−−→012,−−→013,−−→122,−−→123,−−→13e,−−→222,−−→223,−−→23e}. Edges 0-9 cover bytes
[48-57], and edges not 0-9 cover the byte ranges [0-47][58-256];
we use the decimal representation to improve clarity.

At this point, we note that this is not the smallest DFA for the
regular expression \d+. As the same tool is used for the construction
of all the DFAs, any impact of the DFAs not being minimal (e.g.,
extra nodes or edges compared to the minimal representation) is
distributed throughout the whole data set and consistent across all
experiments. While we refer to RE2 [14] for full details of the DFA
construction, though some intuition is provided in Section 5.2.2.

3.2 Coverage Criteria
Given a set of strings S and a DFA G, for all n ∈ N , we mark n as
covered if n is visited during the processing of some s ∈ S . Similarly,
edges e ∈ E and edge-pairs ep ∈ EP are marked as covered if they
are traversed during the processing of some s ∈ S . The sets of
covered nodes, edges, and edge-pairs are denoted Ncov , Ecov , and
EPcov , respectively. These sets are aggregated over all s ∈ S .

As defined in prior work [2], we adopt coverage definitions for
node coverage (NC), edge coverage (EC), and edge-pair coverage
(EPC) as follows:

Definition 3.1 (Node Coverage %). NC = 100 ×
| Ncov |

| N |

Definition 3.2 (Edge Coverage %). EC = 100 ×
| Ecov |

| E |

Definition 3.3 (Edge-Pair Coverage %). EPC = 100 ×
| EPcov |

| EP |

To illustrate the coverage levels, consider the graph G for the
regular expression \d+ in Figure 2 and the string s0 =“2” with

670

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Peipei Wang and Kathryn T. Stolee

Table 1: Coverage of \d+: S = {“2”, “1001”, “u”, “100u”},
Ssucc = {“2”, “1001”}, and Sf ail = {“u”, “100u”}.

S Ssucc Sf ail
NC 100.0% 80.0% 100.0%
EC 100.0% 71.4% 85.7%
EPC 75.0% 62.5% 50.0%

S = {s0}. Traversing G visits 0 → 1 → 3 (recall that “2” is
interpreted as the byte stream [50 256]). Node 3 is the accept node,
which denotes that the regular expression matches the input string
(i.e., s ∈ L(R)). During the traversal of G, nodes {0, 1, 3} are visited,
meaning that Ncov = {0, 1, 3}, Ecov = {

−→01,−→13}, and EPcov = {
−−→013}.

The coverage levels for \d+ by input strings S = {s0} are: NC =
60% (3/5), EC = 28.6% (2/7), and EPC = 12.5% (1/8).

Next, consider adding the string s1 =“1001”, which is interpreted
as the byte stream [49 48 48 49 256]. Now, S = {s0, s1}. Travers-
ingG on s1 traverses the following path: 0→ 1→ 2→ 2→ 2→ 3,
adding node 2 to Ncov , edges

−→12, −→22, and −→23 to Ecov , and edge-pairs
−−→012, −−→122, −−→222, and −−→223 to EPcov . As a result, the coverage levels for
the regular expression \d+ by input strings S = {s0, s1} are: NC =
80% (4/5), EC = 71.4% (5/7), and EP = 62.5% (5/8).

As an example of a non-matching string, let s2 = “u”, which is
interpreted as the byte stream [117 256]. The path traversed in
G is 0→ e; after reaching e , the processing stops. Node e is added
to Ncov , edge

−→0e is added to Ecov , and there is no change to EPcov .
Considering S = {s0, s1, s2}, the combined coverage levels are: NC =
100% (5/5), EC = 85.7% (6/7), and EPC = 62.5% (5/8).

For another example of a non-matching string, let s3 = “100u”,
which is interpreted as the byte stream [49 48 48 117 256]. The
path traversed inG is 0→ 1→ 2→ 2→ 3→ e . While this input
visits all nodes in G, NC = 100% already, so no nodes are added to
Ncov . Edge

−→3e is added to Ecov , edge-pair
−−→23e is added to EPcov .

Considering S = {s0, s1, s2, s3}, the combined coverage levels are:
NC = 100% (5/5), EC = 100% (7/7), and EPC = 75% (6/8).

For each coverage metric, we compute coverage over the entire
set of input strings, total, and two subsets: success, and failure. The
numbers reported in this section are for the total set of input strings,
that is, S = {s0, s1, s2, s3}. After, we split the input strings into those
that terminate in an accept state in Nm , which we call Ssucc , and
those that terminate in the error state Ne , which we call Sf ail . With
this example, Ssucc = {s0, s1} and Sf ail = {s2, s3}.

Table 1 presents a summary of the coverage levels for each set
of input strings. Achieving 100% for any of the coverage metrics
is infeasible for Ssucc alone because the error state e will never
be reached, missing that node and the edges leading to it. In this
example, EC for Ssucc is 71.4% while EC for S is 100%.

Achieving 100% coverage for EPC is the most difficult, but it
is possible in this example. The missing edge-pairs are computed
by EP \ EPcov = {

−−→123,−−→13e}. Two additional input strings can lead
to 100% EPC. Input “1u” would be interpreted as the byte stream
[49 117 256] and traverses the path 0 → 1 → 3 → e , hence
covering −−→13e . Input “11u” would lead to byte stream [49 49 117

256], traverse the path 0→ 1→ 2→ 3→ e and cover −−→123.
Note that it is possible to have a DFA which is simply two nodes

connected by a single edge. Thus, edge pairs may not exist. For

this case, we treat edge-pair coverage as identical to edge coverage.
Among the 15,096 regular expressions studied in this work, only
two regular expressions have this structure.

4 RESEARCH QUESTIONS
To explore the potential of using graph coverage metrics for regular
expressions, we evaluate the following research questions:
RQ1: How well are regular expressions tested in GitHub?
To answer RQ1, we identify 1,225 Java projects that have existing
test suites covering the regular expressions. From these, we ex-
tract 15,096 regular expressions and 899,804 total test input strings,
measuring NC, EC, and EPC for each regular expression. To ob-
tain the regular expressions and their corresponding strings which
are covered by test cases, we use the Java bytecode manipulation
framework Javassist [11] to record the regular expressions when
pattern matching methods are triggered by test cases.
RQ2: How well can the regular expression string generation tool Rex
improve the test coverage of regular expressions?
Using the regular expressions from RQ1, we generate test strings
using Rex [33] and calculate the regular expression coverage, com-
paring it to the coverage of the user-defined test suites from RQ1.
Using Rex, we generate test suites of three sizes, one to match the
size of the user-defined test suites from the GitHub projects, one 5x
that size, and one 10x that size. By comparing the coverage statis-
tics we got in RQ2 to those in RQ1, we evaluate the test coverage
possibilities through using an automated tool.

5 STUDY
Applying the coverage metrics defined in Section 3.2 to regular ex-
pressions from the wild requires (1) instrumentation to capture the
regular expressions and strings matched against them (Section 5.1),
(2) a tool to measure coverage given a regular expression and a set
of strings (Section 5.2), and (3) a large corpus of projects with regu-
lar expressions and test suites that execute the regular expressions
(Section 5.3). To address RQ2, we use the Rex [33] tool to generate
input strings for the regular expressions in our study (Section 5.4).

5.1 Instrumentation
This section describes our approach to collecting regular expres-
sions from GitHub projects and the strings evaluated against the
regular expressions during testing.

5.1.1 Instrumented Functions. There are different types of match-
ing between a regular expression and a string. The Java function
Pattern.matches requires the regular expression to match a string
from its beginning to its end; Python’s re.match requires the regular
expression to match a string only from its beginning, not necessar-
ily match to the end of the string; and the C# function Regex.Match
requires the regular expression to match only a substring of the in-
put string. These are called FullMatch, FirstMatch, and ManyMatch,
respectively. In this work, we consider only FullMatch matches
and related functions in Java projects. The related functions for
FullMatch in Java are:

• java.lang.String.matches(String regex)
• java.util.regex.Matcher.matches()

671

How Well Are Regular Expressions Tested in the Wild? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

• java.util.regex.Pattern.matches(String regex,
CharSequence input)

In these functions the entire string is required to match the regular
expression [17]. Thus, a regular expression with end-point anchors
(i.e., ^ and $) and without are no different.

5.1.2 Bytecode Manipulation. Our instrumentation is built on top
of the Java bytecode manipulation framework Javassist [11], which
can dynamically change the class bytecode in the JVM. All the
projects are run in jdk1.7. We intercepted FullMatch function in-
vocations in Java. For each invocation, we collect information
about the regular expression itself, its location in the code, and
any strings matched against it during test suite execution. These
strings matched against the regular expression are referred to as
the input strings or test inputs (i.e., S from Section 3.2).

Since a regular expression may also appear in third-party li-
braries, we use the Java Reflection API to additionally record the
caller function stack of the instrumented methods and extract the
file name, class name, andmethod name of their callermethods. This
allows us to identify when the regular expression being executed is
from the system under test and when it is from a third-party library.
We are dependent on two libraries during the experimentation,
org.junit and org.apache.maven. Because Maven uses regular
expressions to automate unit tests, all recorded regular expressions
whose test classes are from package org.junit.runner.* or from
package org.apache.maven.plugins.* are treated as regular ex-
pressions from third-party libraries and dropped.

5.1.3 Recorded Information. We illustrate the recorded informa-
tion for the regular expression ((:\w+)|*) and a string “one-
name” from a project used in our study1:
• system under test: mikko-apo/KiRouter.java
• test file: SinatraRouteParser.java
• test class: kirouter.SinatraRouteParser
• test method: compileRoutePattern
• call site: line 38
• regular expression: ((:\w+)|*)
• input string:“one-name"

In Section 2.2, the regular expression in the call site on line 1 is
hard-coded. However, often the regular expression is passed as
a variable, allowing multiple regular expressions to be observed
during testing at the same call site (i.e., there is a many-to-one
relationship between regular expressions and call sites). When
this occurs, the recorded information is the same as above, except
regular expression and input string would be different.

5.2 Coverage Analysis
This section details the construction of DFAs for computing cov-
erage. Given a regular expression R and a set of input strings S ,
we first build a DFA for L(R) and then track the nodes and edges
visited in the DFA during pattern matching with each string s ∈ S .
We built our infrastructure on top of RE2 [14], a regular expression
engine similar to those used in PCRE, Perl, and other languages.2

1https://github.com/mikko-apo/KiRouter.java
2Original RE2 at https://github.com/google/re2 and modified code at https://
github.com/wangpeipei90/re2

5.2.1 DFA Types. Given a regular expression and an input string to
match, we could build multiple DFAs with different considerations.
We could build a static DFA with a regular expression alone or build
a DFA on-the-fly (dynamic DFA) considering both a regular expres-
sion and an input string. For the same regular expression, different
input strings will yield different dynamic DFAs. We can also build
a Forward DFA and Backward DFA depending on the direction of
scanning the regular expression. These decisions come with var-
ious performance tradeoffs during the matching process. For the
purpose of our work, we need each DFA to be built consistently
regardless of the input string, so we use a static DFA. We chose the
forward direction as it seems the most natural for interpretation.

5.2.2 DFA Mapping. When matching an input string to a regular
expression, RE2 builds a dynamic DFA. However, our coverage is
computed over a static DFA. This requires mapping to aggregate
coverage of a regular expression given multiple input strings.

For a single regular expression, different input strings often re-
sult in different dynamic DFAs. To make matters worse, these DFAs
have inconsistent naming of their states. Therefore, to calculate the
coverage of a certain regular expression based on the same DFA,
these dynamic DFAs have to be mapped to the same static DFA,
and then coverage is computed on the static DFA. This is usually
straightforward as the dynamic DFA is always an isomorphic sub-
graph of the static DFA and N0, Ne and Nm are consistently labeled
in the static and dynamic DFAs.

Consider the regular expression \d+ and S = {s0, s1, s2, s3} from
Section 3.2 where s0 = “2”, s1 = “1001”, s2 = “u”, and s3 = “100u”.
Figure 3a shows the static forward DFA. The dynamic DFAs cor-
responding to these four inputs are shown in Figure 3b, Figure 3c,
Figure 3d, and Figure 3e, respectively. Blue arrows are used to iden-
tify the visited edges in the dynamic DFAs when the input string is
a match. Red edges are used to identify the visited edges when the
input string is not a match. Note that in Figure 3, for simplicity, we
have already mapped and renamed the nodes in the dynamic DFAs
according to the static DFA.

5.2.3 RE2 Limitations and Modifications. We enlarged the default
memory size of a cached DFA so that it could accommodate large
DFA graphs. Due to Linux environment limitations, string length
is limited to 131,072 and null type is not allowed. These situations
are rare, impacting < 1% of the collected regular expressions (see
Section 5.3).

5.2.4 Coverage Calculation. With the consistent naming between
a static DFA and a dynamic DFA, all nodes, edges, and edge pairs
in the latter are regarded as visited nodes, edges, and edge pairs of
the former. That is, a node only appears in a dynamic DFA when
it is visited during matching; these can be thought of as just-in-
time DFA constructions in the context of a string to match. The
coverage metrics from Section 3.2 are computed over the static
DFAs, aggregating over all input strings observed during testing.

5.3 Artifacts for RQ1
RepoReaper [29] provides a curated list of GitHub projects with the
ability to sort based on project properties, such as the availability
of test suites, which is a pre-requisite for our study. We focused on

672

https://github.com/mikko-apo/KiRouter.java
https://github.com/google/re2
https://github.com/wangpeipei90/re2
https://github.com/wangpeipei90/re2

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Peipei Wang and Kathryn T. Stolee

0 e

not 0-9

1
0-9

3
[0-256]

not 0-9

2

0-9 not 0-9
0-9

(a) Fully specified static DFA for: \d+

0 12 3[256]

(b) Dynamic DFA for regular expression: \d+ and input: “2”

0 11 320 [256]

0,1

(c) Dynamic DFA for regular expression: \d+ and input: “1001”

0 eu

(d) Dynamic DFA for regular expression: \d+ and input: “u”

0 11 e3 [256]20 u

0

(e) Dynamic DFA for regular expression: \d+ and input: “100u”

Figure 3: Visited DFA subgraphs for the regular expression
‘\d+’. For each figure, N0 is the initial node 0, Nm is the ac-
cept node 3, Ne is the error node e. The arrows colored blue
represent transitions in successful matches. The arrows col-
ored red represent transitions in failed matches. The char-
acters without square brackets are the literal characters in
state transitions. For example, ‘u’ prompts the transition
from Node 0 to Node e. [256] implies that there are no more
bytes from the input string.

Java projects due to its popularity on GitHub and the availability
of a bytecode analysis framework for instrumentation.

5.3.1 Project Selection. In December 2017, we selected the 136,196
Java projects whose unit test ratio reported in RepoReaper is greater
than zero. Because the density of regular expressions in projects
tends to be low, we automated project builds and test suite execution
in order to collect sufficient data. As such, we require all projects
we analyze to use maven and junit to automatically run unit tests.
We identified 13,637 Java Maven projects that used Java pattern
matchings functions mentioned in Section 5.1. From those, we
selected the ones that could be successfully compiled and tested
in Maven, leaving 5,691 projects on which we attempted to collect
coverage information.

5.3.2 Regular Expression and Test Input Collection. To collect the
input strings for each regular expression, we instrumented each
project and executed the test suites. We changed the configurations
of the plugin maven-surefire-plugin by adding -javaagent argument
to argLine so that when Maven forks a VM to run the unit tests
the VM can load the instrumentation library. Each project module
that runs tests executes in different VMs and the information is
recorded in different files. testFailureIgnore is configured to true so
that one test failure does not affect the other tests, allowing us to
record as many regular expressions in the project as possible.

Table 2: Description of 1,225 Java Projects Analyzed. All
numbers are rounded to nearest integer except the test ra-
tio and KLOC.

Attributes mean 25% 50% 75% 90% 99%
Tested Regular exp. 12 1 3 7 18 99
Stars 35 0 1 5 30 833
Test ratio 0.238 0.096 0.210 0.346 0.482 0.691
KLOC 55.4 2.0 6.7 25.1 86.7 951.0
Size (KB) 19,062 286 1,079 6,449 33,163 249,915
Call sites 15 2 4 10 31 211
Tested call sites 3 1 2 3 6 20
Reg. exp./tested site 5 1 1 2 5 38

Of the 5,691 projects with Maven, test suites, and pattern match-
ing functions, 1,665 projects contained 24,058 regular expressions
executed by test suites. The remaining projects contained regular
expressions not executed by the test suites, and thus could not be
instrumented.

5.3.3 Filtering Out Third-Party Regular Expressions. FullMatch in-
vocations from Maven and JUnit have been removed already at this
point, but other third-party libraries also use regular expressions.
We can detect this by looking for syntactically identical regular
expressions with invocations on the same file, same class, same
method, but in different GitHub projects. If the number of projects
is larger than one, then it is regarded as a third-party regular ex-
pression, and all records related to the same stack information are
dropped. A limitation of this approach is that we miss some third-
party invocations that are only present in a single project. Given
the large number of projects analyzed, the impact of this is likely
to be small.

We identified 8,496 regular expressions as coming from third-
party libraries. The resulting dataset contains 1,256 projects and
15,562 regular expressions, 14,040 of which are syntactically unique.

5.3.4 RE2 Analysis. Since RE2 only supports the most common
regular expression language features, we filtered out the regular
expressions containing advanced and non-regular features. RE2
failed to construct DFAs for 457 regular expressions, leaving 15,105
regular expressions spread across 1,225 projects.1 The RE2 limita-
tions on input string length and the null byte affected 56 regular
expressions and 191 input strings, and nine of the 56 regular ex-
pressions are removed from coverage analysis because their only
input string is dropped.

These 1,225 projects contain 18,426 call sites of the instrumented
functions. Only 3,093 call sites are executed by the test suites; the
same call site can have many regular expressions in the case of
dynamically generated regular expressions.

The final dataset used for analysis contains 1,225 projects, 3,093
call sites, 15,096 regular expressions, of which 13,632 are syntacti-
cally unique. As the same regular expression can appear in multiple
projects, or multiple places in the same project, all are retained
since each is potentially tested differently. These 15,096 regular
expressions are executed by 899,804 test inputs.

1Assuming all 457 are non-regular, this means over 97% of the regular expressions
sampled are regular, echoing findings from the Python analysis in Section 2.1.

673

How Well Are Regular Expressions Tested in the Wild? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

Table 3: Description of 15,096 regular expressions analyzed
for RQ1. All numbers are rounded to nearest integer.

Attributes mean 25% 50% 75% 90% 99%
Nodes (|N |) 144 12 28 70 324 939
Edges (|E |) 565 24 75 212 938 2,813
Edge pairs (|EP |) 2,115 25 99 414 1,647 16,850
Regular exp. len. 31 13 18 39 67 161
Input strings (|S |) 60 1 2 7 27 662
Input string len. 125 9 17 63 318 948

5.3.5 Project Characteristics. Table 2 describes the 1,225 projects in
terms of Tested regular exp. (numbers of tested regular expressions
per project), Stars (a measure of popularity), KLOC (lines of code in
thousands), Size (size of the repository in KB), Test ratio (the ratio
of number of lines of code in test files to the total lines of code in
repository, as reported by RepoReaper), Call sites (the number of
FullMatch methods in the source code), Tested call sites (the number
of FullMatch call sites executed by the tests), and Reg. exp. / tested site
(the number of regular expressions passed to each tested call site).
The mean column describes the average value for each attribute.
Columns 25%, 50%, 75%, 90%, and 99% show the distribution of each
attribute at 25 percentile, median, 75 percentile, 90 percentile, and
99 percentile, respectively. The average number of tested regular
expressions collected per project was 12 with a range of 1 to 2,004.

5.3.6 Regular Expression Characteristics. Table 3 shows the DFA
information for regular expressions. Nodes, edges, and edge pairs are
the total number of nodes, edges, edge pairs in the DFA graph of a
regular expression. The average regular expression is quite large
with 144 nodes, though this is skewed as the median is 28 nodes.
Regular exp. len. measures the length of the string representing the
regular expression itself in characters. # Input strings is the number
of syntactically unique input strings executed by a project’s test
suite, per regular expression. The average number of syntactically
unique test inputs per regular expression is 60, but the median is
2. Input string len. shows the lengths of the input strings (i.e., each
s ∈ S) in terms of the number of characters.

5.4 Artifacts for RQ2
To explore the coverage of regular expressions using tools, we
selected Rex [33] due to its high language feature coverage [9].

5.4.1 Artifact Selection. We need a set of regular expressions with
the following characteristics: 1) are covered by tests; 2) can be
analyzed by RE2 for coverage analysis; and 3) can be analyzed
by Rex for test input generation. To satisfy 1) and 2), we begin
with the dataset from RQ1 of 1,225 projects and 15,096 regular
expressions. To satisfy 3), we select all the regular expressions that
Rex supports and for which |Ssucc | > 0, since Rex only generates
matching strings, leaving 10,155 regular expressions of which 9,063
are syntactically unique.

5.4.2 Rex Setup. Rex defaults to ManyMatch as opposed to the
FullMatch behavior of our dataset. To force Rex to treat each regular
expression as a full match, we added endpoint anchors (i.e., ^ and $)
to each regular expression. Because Rex may get stuck in generating
input strings for certain regular expressions, we set a timeout of one
hour for Rex to generate strings; regular expressions that exceed the

Table 4: Description of 7,926 regular expressions analyzed
for RQ2. All numbers are rounded to nearest integer.

Attributes mean 25% 50% 75% 90% 99%
Nodes (|N |) 220 13 31 162 618 970
Edges (|E |) 773 30 97 663 1,468 3,694
Edge pairs (|EP |) 2,422 36 186 1,021 1,999 21,274
Regular exp. len. 29 12 15 31 71 160
Input strings (|S |) 70 1 2 8 39 961
|Ssucc | 34 1 1 2 8 208

timeout are discarded. Of the 10,155 regular expressions in GitHub
whose |Ssucc | > 1, Rex encountered the timeout for only two.

Another complication comes at the intersection of the Rex and
RE2 language support; Rex-generated strings must be processed
by RE2 for the coverage analysis. For example, the character class
“\s” in Rex accepts six whitespace characters and RE2 accepts five.
In another example, some generated Unicode strings in Rex could
not be processed in RE2 because their Unicode encoding in Rex
is UTF-16 while RE2 handles Unicode sequences encoded in UTF-
8 or Latin-1. To simplify the experiment, we configured Rex to
generated strings in ASCII. We also dropped strings which contain
unsupported features or characters in either RE2 or Python 3. We
also dropped strings which lead to failed matchings and reported
the coverage based on successful matchings.

After filtering out all the unsupported regular expressions, our
reported coverages by Rex strings in ASCII encoding are based on
7,926 regular expressions of 985 GitHub projects; 7,007 of them
are syntactically unique. Table 4 shows the attributes of regular
expressions for which Rex could generate strings.

5.4.3 Input String Generation. For each regular expression R, we
use Rex to generate input string sets relative to the size of the
matching strings |Ssucc |. We generate input string sets of three
sizes: equal to |Ssucc |; equal to 5× |Ssucc |; and equal to 10× |Ssucc |.
We refer to these experiments as Rex1M, Rex5M, and Rex10M, re-
spectively. For each experiment, we repeated the string generation
using the system time as the random seed to encourage diversity
among the generated strings. The averages over five runs (Rex5M
and Rex10M) or ten runs (Rex1M) for each metric are reported as
Rex’s coverage of R.

For example, say a regular expression R from GitHub has five
input strings; |S | = 5. Three of the input strings are matching;
|Ssucc | = 3. For this experiment, Rex would generate three strings
ten times, then 15 strings five times, then 30 strings five times,
totaling 30 + 75 + 150 = 255 generated strings. For each set of
{3, 15, 30} strings, NC, EC, and EPC are computed, averaged over
{10, 5, 5} runs.

In the case of finite languages, Rex may fail to generate sufficient
input strings. For example, the total number of matching input
strings in ASCII for a regular expression \d is ten (i.e., 0-9). If in
the repository there are also three matching input strings, Rex
could generate three strings ten times, but would fail to generate
5 × 3 = 15 strings. The calculation of NC, EC, and EPC are based
on the best-effort: for each run of every regular expression, we
calculate coverage with input strings up to |Ssucc | in Rex1M, 5x
of |Ssucc | in Rex5M, and 10x of |Ssucc | in Rex10M; and coverage
of every regular expression is the averages of its coverages over
{10, 5, 5} runs in Rex1M, Rex5M, and Rex10M. In other words, if

674

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Peipei Wang and Kathryn T. Stolee

Rex failed to generate the required number of input strings, the
coverage is calculated based on the input strings Rex can generate.

In the ten runs of generating input string sets equal to |Ssucc |
for Rex1M, there are 833 regular expressions that have fewer input
strings than |Ssucc | in at least one run. In the five runs of generating
input string sets 5x of |Ssucc | for Rex5M, there are 2,041 regular
expressions that have fewer input strings than 5x of |Ssucc | in at
least one run. In the five runs of generating input string sets 10x of
|Ssucc | for Rex10M, there are 2,336 regular expressions that have
fewer input strings than 10x of |Ssucc | in at least one run.

6 RESULTS
Here, we present the results of RQ1 and RQ2 in turn.

6.1 RQ1: Test Coverage of Regular Expressions
We address RQ1 is two ways. First, we look at the number of call
sites to FullMatch methods that are actually tested. Next, we look
at the test coverage for each tested regular expression,

6.1.1 Tested Call Sites. In the 1,225 projects, there are 18,426 call
sites of the instrumented functions in Section 5.1.1. However, only
3,093 call sites are executed by the test suites. This means that
15,333 (83.21%) of the call sites are not covered by the test suites.
For those that are, the median of unique regular expressions per
tested call site is one, with an average of five (Table 2).

Summary: Of the 18,426 call sites for FullMatch methods in
1,225 GitHub projects, only 3,093 (16.8%) are executed by the test
suites.

6.1.2 Coverage of Tested Regular Expressions. We successfully gen-
erated static DFAs for 15,096 regular expressions from 1,225 Java
GitHub projects and dynamic DFAs for 899,804 regular expres-
sion/input string pairs.1 Among the regular expressions, 4,941
(32.7%) have only failing inputs (i.e., |Ssucc | = 0) and 6,029 (39.9%)
have only inputs of successful matching (i.e., |Sf ail | = 0). This
means that 10,970 (72.7%) of the regular expressions do not contain
test inputs that exercise both the matching and non-matching sce-
narios. Of these, 6,318 (41.9%) regular expressions contain only one
test string (i.e., |S | = 1). There are 4,126 (27.3%) regular expressions
with both failed and successful matchings. 2

Table 5 describes properties of the test input sets for each regular
expression: |S | is the size of the test suite, computed as the number
of unique input strings for a regular expression; |Ssucc | means the
number of matching inputs; |Sf ail | means the number of failing
inputs; succ_ratio shows the ratio of successful matchings to all
matchings for each regular expression; fail_ratio shows the ratio
of failed matchings to all matchings for each regular expression.
Generally, tested regular expressions use more failing inputs than
successful inputs.

Table 6 describes the distributions of Node Coverage (NC), Edge
Coverage (EC), and Edge-Pair Coverage (EPC) over S , Ssucc , and
Sf ail . Figure 4 displays this information graphically, with coverage
percentage on the y-axis and the input string sets, S , Ssucc , and
Sf ail on the x-axis. Most of the regular expressions are not tested

1We note that 899,804 is less than 60 × 15096 = 905760 because the mean of # Input
strings (|S |) is 59.60546 and rounded up to 60.
2Data at https://github.com/wangpeipei90/RegexTestingCoverageData.git.

Table 5: Description of 15,096 Regular Expressions’ test
suites. All numbers are rounded to the nearest integer, ex-
cept the ratios which are rounded to two decimal places.

Attributes mean 25% 50% 75% 90% 99%
|S | 60 1 2 7 27 662
|Ssucc | 19 0 1 1 4 79
|Sf ail | 41 0 1 4 19 383
succ_ratio 49.03 0.00 44.70 100.00 100.00 100.00
fail_ratio 50.97 0.00 55.30 100.00 100.00 100.00

Table 6: Coverage values in Figure 4.

Coverage Suite mean 25% 50% 75% 90% 99%
NC (%) S 59.05 24.62 63.64 95.65 100.00 100.00
NC (%) Ssucc 47.84 0.00 46.15 90.00 99.60 99.89
NC (%) Sf ail 18.89 0.00 8.51 25.00 62.26 100.00
EC (%) S 28.74 6.67 23.90 49.97 53.80 80.00
EC (%) Ssucc 23.20 0.00 12.36 49.96 50.00 60.00
EC (%) Sf ail 8.55 0.00 2.20 7.80 32.19 65.08
EPC (%) S 23.77 2.47 12.50 49.96 50.00 66.67
EPC (%) Ssucc 20.48 0.00 5.26 49.94 50.00 55.56
EPC (%) Sf ail 5.50 0.00 0.00 2.74 22.12 57.14

S Ssucc Sfail

0
2
0

4
0

6
0

8
0

1
0
0

Node
N

o
d
e
 C

o
ve

ra
g
e
(%

)
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

S Ssucc Sfail

0
2
0

4
0

6
0

8
0

1
0
0

Edge

E
d
g
e
 C

o
ve

ra
g
e
(%

)
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

S Ssucc Sfail

0
2
0

4
0

6
0

8
0

1
0
0

Edge−Pair

E
d
g
e
−

P
a
ir
 C

o
ve

ra
g
e
(%

)
0

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0
0

Figure 4: Coverage for 15,096 regular expressions.

thoroughly since the mean values of coverage are low, especially
for edge and edge-pair coverage. Although the coverages on failed
matchings are relatively small, they contribute to a high overall
test coverage. Failed matching tests are a necessary part of testing
regular expressions, and as shown in Table 5, |Sf ail | > |Ssucc |.

Summary: A majority of regular expressions (10,970, 97.7%) are
tested with exclusively passing (6,029, 39.9%) or exclusively failing
(4,931, 32.7%) test inputs. Edge and edge-pair coverage are both
very low. On average, the set of test inputs contains more failing
inputs than successful inputs.

6.2 RQ2: Coverage with Rex
Figure 5 shows the analysis results given the generated inputs in
ASCII encoding, organized by each of five datasets. RepoBS and
RepoBM show the coverages over S and Ssucc , respectively, from
7,926 regular expressions using the developer-defined test suite in

675

https://github.com/wangpeipei90/RegexTestingCoverageData.git

How Well Are Regular Expressions Tested in the Wild? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

RepoB S

RepoB M

Rex1M

Rex5M

Rex10M

0 20 40 60 80 100

Node

Node Coverage(%)

0 20 40 60 80 100

RepoB S

RepoB M

Rex1M

Rex5M

Rex10M

0 20 40 60 80 100

Edge

Edge Coverage(%)

0 20 40 60 80 100

RepoB S

RepoB M

Rex1M

Rex5M

Rex10M

0 20 40 60 80 100

Edge−Pair

Edge−Pair Coverage(%)

0 20 40 60 80 100

Figure 5: Node, edge, edge-pair coverage of 7,926 regular expressions with Rex-generated ASCII inputs (Rex1M , Rex5M , Rex10M)
of 7,926 regular expressions in GitHub which are used in Rex (RepoBS , RepoBM).

Table 7: Coverage values of the 7,926 regular expressions in
GitHub for RepoBM and RepoBS in Figure 5.

Coverage Expr mean 25% 50% 75% 90% 99%
NC (%) RepoBM 70.41 43.75 80.00 97.67 99.84 99.90
EC (%) RepoBM 33.79 12.01 45.91 49.97 50.00 66.67
EPC (%) RepoBM 29.39 4.83 37.50 49.97 50.00 60.00
NC (%) RepoBS 73.27 46.15 85.71 99.83 100.00 100.00
EC (%) RepoBS 36.35 12.36 48.39 49.97 60.00 85.71
EPC (%) RepoBS 30.68 5.13 40.00 49.97 50.00 74.67

Table 8: Coverage values of the 7,926 regular expressions us-
ing Rex for Rex1M, Rex5M, and Rex10M in Figure 5.

Coverage Expr mean 25% 50% 75% 90% 99%
NC (%) Rex1M 69.29 41.67 78.33 97.44 99.84 99.90
EC (%) Rex1M 33.57 11.62 45.00 49.97 50.00 71.43
EPC (%) Rex1M 29.50 4.33 35.00 49.96 50.00 66.67
NC (%) Rex5M 71.69 46.15 83.33 97.67 99.84 99.90
EC (%) Rex5M 36.42 12.77 49.81 50.00 54.55 80.00
EPC (%) Rex5M 33.04 6.63 49.54 50.00 56.67 75.00
NC (%) Rex10M 72.01 46.15 83.33 97.73 99.84 99.90
EC (%) Rex10M 36.87 13.39 49.85 50.00 55.89 80.00
EPC (%) Rex10M 33.77 6.90 49.77 50.00 58.33 75.00

GitHub; details are in Table 7. Rex1M, Rex5M, and Rex10M show the
coverages of 7,926 regular expressions based on the Rex-generated
test inputs with sizes of 1x, 5x, and 10x of |Ssucc | the user-defined
test suite, respectively. Coverage details are shown in Table 8.

Table 9 illustrates the differences in coverage between the repos-
itory (RepoBM and RepoBS) and Rex (Rex1M, Rex5M, and Rex10M).
Using a paired Wilcoxon signed-rank test, we find that for all three
coverage metrics, RepoBM significantly outperforms Rex1M with
α = 0.0001. However, as test suite size is strongly correlated with
coverage [19], as soon as the Rex test set is amplified to 5x and 10x
the size, the coverage of Rex outperforms the developer coverage.
When considering all test inputs from the repository and not just
the successful ones, with test inputs sets of the same size, RepoBS
outperforms Rex1M. However, this comparison is unfair since Rex
does not generate non-matching strings. That said, as soon as the
Rex dataset is amplified as in Rex5M and Rex10M, there is no clear
winner compared to all test inputs from the repository. While it

Table 9: Differences in coverage based on datasets in Fig-
ure 5. Hypothesis tests used paired Wilcoxon signed-rank
test. Bold text identifies when one of the datasets had sig-
nificantly higher coverage for all three metrics. If there was
a conflict between the metrics (e.g., Set1 > Set2 for NC, and
Set1 < Set2 for EPC), there was no winner

H0 : Set1
d
= Set2

Set1 Set2 NC EC EPC
RepoBM Rex1M p < 0.0001 p < 0.0001 p < 0.0001
RepoBM Rex5M p < 0.0001 p < 0.0001 p < 0.0001
RepoBM Rex10M p < 0.0001 p < 0.0001 p < 0.0001
RepoBS Rex1M p < 0.0001 p < 0.0001 p < 0.0001
RepoBS Rex5M p < 0.0001 p = 0.0004 p < 0.0001
RepoBS Rex10M p < 0.0001 p = 0.4147 p < 0.0001
RepoBS RepoBM p < 0.0001 p < 0.0001 p < 0.0001

may appear that Rex can do as well as the repository, the reality is
that the error node will never be covered by Rex, a fact which is
not apparent by looking at the numbers alone.

Summary: Rex can handle approximately 78.1% of the regular
expressions from our dataset. Considering only the matching test
inputs and test sets of the same size, Rex does not achieve coverage
as high as the developer-written tests. However, the coverage num-
bers are extremely close. This indicates that tools such as Rex can
be used to write test inputs with similar coverage to the developer
tests, but will always miss Ne and all edges incident to it.

7 DISCUSSION
This section summarizes future work based on our findings and
discusses threats to validity.

7.1 Opportunities for Future Work
Coverage provides useful stopping criteria for testing. However,
high coverage does not necessarily imply test suite effectiveness in
source code [19], which may also hold true for regular expressions.
At the same time, as regular expressions are responsible for many
software faults, it is important to explore how to make them less
error-prone. Our approach in this work is through test metrics, and
there are many areas of future work that follow:

676

ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA Peipei Wang and Kathryn T. Stolee

String-generation Tools: Given the low coverage of regular
expressions shown in Figure 4, a natural next step could be to
generate strings to achieve high coverage. Adding a mutation step
to the input string may be effective at forcing the Rex-generated
strings into the error state to cover the uncovered edges and node.
An alternate approach may be to provide the complement of the
regular expression to Rex as another way to generate failing inputs.

With automatically-generated strings, one threat is usability. For
the developer-written tests, it is likely that the regular expression
strings are more meaningful in context than they are for the Rex-
generated strings. Future work will look at the overlap in content
between the test inputs from the repository and from Rex.

However, it may not always be possible to achieve 100% test
coverage, even with a perfect string generation tool. There are
regular expressions that are untested because they are unreach-
able. Some regular expressions have hard-coded matching inputs,
which makes it impossible to improve the coverage; for example:
boolean isMatch = Pattern.matches("a*b", "ab"); Future work for im-
proving coverage levels should also consider the potential for im-
provement based on such factors.

Beyond Structural Coverage: The metrics we explore are
structural metrics, which can identify faults that are revealed in the
structure of the DFA, such as the example in Section 2.3. Alternately,
as suggested in prior work [10], refactoring could potentially reveal
this particular fault, as the numeric representation [0-9]was found
to be more understandable than \d. Performing the replacement
might alert the developer that d should be \d.

In terms of improving regular expression testing, structural met-
rics are a first step. Building on the example in Section 3, achieving
100% coverage requires a minimum number of test inputs that vary
in string length and content. In the example of \d+, there are strings
of length one to length four, though strings could be longer to test
multiple iterations on the self-loop. Strings can contain only digits,
only non-digits, or both digits and non-digits. Strings can start with
digits or start with non-digits. Defining such input space partitions
may lead to intuitive test sets with high behavioral coverage.

7.2 Threats to Validity
Internal: Wemeasure the test coverage of regular expression used
in functions of full matching with FullMatch DFAs in the forward
direction. The experimental results may not reflect the test coverage
of regular expressions used in other functions, nor the test coverage
of regular expressions which could not be converted into a DFA.
External: The Java regular expressions used in this evaluation
were collected from RepoReaper JavaMaven projects compiled with
Java jdk1.7, which is only a small portion of all GitHub Java projects
and may not generalize to all Java projects and to other languages.
It is possible that there are still regular expressions from third-party
libraries in the dataset, which could bias results. Due to limitations
of RE2 and Rex, the results of test coverage applies exclusively to
the features supported. All our projects had test suites, which may
overestimate the test coverage levels for typical regular expressions.

8 RELATEDWORK
Regular expressions are used widely in software programs [9] but
are often difficult to understand and error-prone [10]. Prior work on

regular expression comprehension [10] raises a concern about how
well the regular expressions used in programs are tested. Although
there are papers on program test coverage, none of them have
specifically discussed testing regular expressions.

Software test coverage can be measured at different levels of
granularity, such as method, statement, branch, integration, and
unit (e.g., [2, 24, 27, 31, 37]). Symbolic execution [3, 7, 8, 35] is
one way to generate inputs and to obtain program test coverage
at the level of branches. There are many tools for automated test
generation [16, 30, 36]. For example, Reggae [25] aims to mitigate
the large space exploration issues in generating test inputs for
programs with regular expressions.

With respect to the finite automaton constructed from regular
expressions, brics [28] contains a DFA implementation with very
limited operations; while RE2 [13, 14] provides a DFA implemen-
tation which runs much faster than traditional regular expression
engines. Rex [33] builds a symbolic representation of finite au-
tomata (SFA). Some string solvers [21] and tools for generating
testing inputs which use string solvers [18, 34] build finite-state
automata based on string constraints.

Visualizations to aid debugging [1, 6] are powerful techniques
for regular expression comprehension, and may provide some ex-
planation for low test coverage of regular expressions in source
code, that is, developers use online tools instead.

Other techniques and tools have been developed in string genera-
tion or regular expression extraction for system fault detection and
performance optimization. Rex [33] generates testing inputs for the
regular expression according to its SFA representation. brics [28]
generates inputs by traversing the DFA and building strings from
the smallest bytes to the largest bytes of every DFA states. Some
string generation tools need user-specified string length [18, 21, 28].
EGRET [23] is focused on generating unexpected test strings to
expose the regular expression errors, but it is based on common
mistakes when creating regular expression rather than maximizing
test coverage of regular expressions. MUTREX [4] employs distin-
guishing strings which can separate a mutated regular expression
from the original one to expose system faults. Genetic programming
has also been applied [12] to find equivalent alternative regular
expressions which exhibit improved performances.

9 CONCLUSION
In this paper we explore coverage over the DFA representation of
a regular expression and measure coverage of regular expressions
from 1,225 GitHub Java Maven projects. We find that over 80%
of FullMatch functions are not tested and that most of the tested
regular expressions have a low edge and edge-pair coverage. We
also show that with the help of the regular expression tool Rex
it is possible to improve the regular expression testing coverage
by adding input strings, but that there is an upper bound for this
type of improvement. This work is a first step toward better un-
derstanding how regular expressions are tested in the wild; future
work will explore how various coverage metrics can reduce the
bugs associated with regular expressions.

ACKNOWLEDGMENTS
This work is supported in part by NSF-SHF #1714699 and #1645136.

677

How Well Are Regular Expressions Tested in the Wild? ESEC/FSE ’18, November 4–9, 2018, Lake Buena Vista, FL, USA

REFERENCES
[1] [n. d.]. Online regex tester, debugger with highlighting for PHP, PCRE, Python,

Golang and JavaScript. https://regex101.com/.
[2] Paul Ammann and Jeff Offutt. 2016. Introduction to software testing. Cambridge

University Press.
[3] Saswat Anand, Corina Păsăreanu, and Willem Visser. 2007. JPF–SE: A symbolic

execution extension to Java pathfinder. Tools and Algorithms for the Construction
and Analysis of Systems (2007), 134–138.

[4] P. Arcaini, A. Gargantini, and E. Riccobene. 2017. MutRex: A Mutation-Based
Generator of Fault Detecting Strings for Regular Expressions. In 2017 IEEE Inter-
national Conference on Software Testing, Verification and Validation Workshops
(ICSTW). 87–96. https://doi.org/10.1109/ICSTW.2017.23

[5] Rohit Babbar and Nidhi Singh. 2010. Clustering Based Approach to Learning Reg-
ular Expressions over Large Alphabet for Noisy Unstructured Text. In Proceedings
of the Fourth Workshop on Analytics for Noisy Unstructured Text Data (AND ’10).
ACM, New York, NY, USA, 43–50. https://doi.org/10.1145/1871840.1871848

[6] Fabian Beck, Stefan Gulan, Benjamin Biegel, Sebastian Baltes, and Daniel
Weiskopf. 2014. RegViz: visual debugging of regular expressions. In Companion
Proceedings of the 36th International Conference on Software Engineering. ACM,
504–507.

[7] Stefan Bucur, Vlad Ureche, Cristian Zamfir, and George Candea. 2011. Parallel
symbolic execution for automated real-world software testing. In Proceedings of
the sixth conference on Computer systems. ACM, 183–198.

[8] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs..
In OSDI, Vol. 8. 209–224.

[9] Carl Chapman and Kathryn T Stolee. 2016. Exploring regular expression usage
and context in Python. In Proceedings of the 25th International Symposium on
Software Testing and Analysis. ACM, 282–293.

[10] Carl Chapman, Peipei Wang, and Kathryn T Stolee. 2017. Exploring regular
expression comprehension. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering. IEEE Press, 405–416.

[11] Shigeru Chiba. 1998. Javassist-a reflection-based programming wizard for Java.
In Proceedings of OOPSLA’98 Workshop on Reflective Programming in C++ and
Java, Vol. 174. 21.

[12] Brendan Cody-Kenny, Michael Fenton, Adrian Ronayne, Eoghan Considine,
Thomas McGuire, and Michael O’Neill. 2017. A search for improved performance
in regular expressions. In Proceedings of the Genetic and Evolutionary Computation
Conference. ACM, 1280–1287.

[13] Russ Cox. 2007. Regular expressionmatching can be simple and fast (but is slow in
Java, Perl, PHP, Python, Ruby,...). URL:http/ /swtch.com/~rsc/ regexp/ regexp1.html
(2007).

[14] Russ Cox. 2010. Regular expression matching in the wild. URL:http/ /swtch.com/
~rsc/ regexp/ regexp3.html (2010).

[15] Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An efficient SMT solver. In
International conference on Tools and Algorithms for the Construction and Analysis
of Systems. Springer, 337–340.

[16] Gordon Fraser, Matt Staats, Phil McMinn, Andrea Arcuri, and Frank Padberg.
2013. Does automated white-box test generation really help software testers?. In
Proceedings of the 2013 International Symposium on Software Testing and Analysis.
ACM, 291–301.

[17] Jeffrey EF Friedl. 2002. Mastering regular expressions. " O’Reilly Media, Inc.".
[18] Indradeep Ghosh, Nastaran Shafiei, Guodong Li, and Wei-Fan Chiang. 2013.

JST: An Automatic Test Generation Tool for Industrial Java Applications with
Strings. In Proceedings of the 2013 International Conference on Software Engineer-
ing (ICSE ’13). IEEE Press, Piscataway, NJ, USA, 992–1001. http://dl.acm.org/
citation.cfm?id=2486788.2486925

[19] Laura Inozemtseva and Reid Holmes. 2014. Coverage is Not Strongly Correlated
with Test Suite Effectiveness. In Proceedings of the 36th International Conference

on Software Engineering (ICSE 2014). ACM, New York, NY, USA, 435–445. https:
//doi.org/10.1145/2568225.2568271

[20] Adam Kiezun, Vijay Ganesh, Shay Artzi, Philip J. Guo, Pieter Hooimeijer, and
Michael D. Ernst. 2013. HAMPI: A Solver forWord Equations over Strings, Regular
Expressions, and Context-free Grammars. ACM Trans. Softw. Eng. Methodol. 21,
4, Article 25 (Feb. 2013), 28 pages. https://doi.org/10.1145/2377656.2377662

[21] Adam Kiezun, Vijay Ganesh, Philip J Guo, Pieter Hooimeijer, and Michael D Ernst.
2009. HAMPI: a solver for string constraints. In Proceedings of the eighteenth
international symposium on Software testing and analysis. ACM, 105–116.

[22] James C King. 1976. Symbolic execution and program testing. Commun. ACM
19, 7 (1976), 385–394.

[23] Eric Larson and Anna Kirk. 2016. Generating Evil Test Strings for Regular
Expressions. In Software Testing, Verification and Validation (ICST), 2016 IEEE
International Conference on. IEEE, 309–319.

[24] Nan Li, Upsorn Praphamontripong, and Jeff Offutt. 2009. An experimental
comparison of four unit test criteria: Mutation, edge-pair, all-uses and prime
path coverage. In Software Testing, Verification and Validation Workshops, 2009.
ICSTW’09. International Conference on. IEEE, 220–229.

[25] Nuo Li, Tao Xie, Nikolai Tillmann, Jonathan de Halleux, and Wolfram Schulte.
2009. Reggae: Automated test generation for programs using complex regular
expressions. In Automated Software Engineering, 2009. ASE’09. 24th IEEE/ACM
International Conference on. IEEE, 515–519.

[26] Yunyao Li, Rajasekar Krishnamurthy, Sriram Raghavan, Shivakumar
Vaithyanathan, and H. V. Jagadish. 2008. Regular Expression Learn-
ing for Information Extraction. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing (EMNLP ’08). As-
sociation for Computational Linguistics, Stroudsburg, PA, USA, 21–30.
http://dl.acm.org/citation.cfm?id=1613715.1613719

[27] Yashwant K Malaiya, Michael Naixin Li, James M Bieman, and Rick Karcich. 2002.
Software reliability growth with test coverage. IEEE Transactions on Reliability
51, 4 (2002), 420–426.

[28] Anders Møller. 2017. dk.brics.automaton – Finite-State Automata and Regular
Expressions for Java. http://www.brics.dk/automaton/.

[29] Nuthan Munaiah, Steven Kroh, Craig Cabrey, and Meiyappan Nagappan. 2017.
Curating GitHub for engineered software projects. Empirical Software Engineering
22, 6 (2017), 3219–3253.

[30] Carlos Pacheco and Michael D Ernst. 2007. Randoop: feedback-directed random
testing for Java. In Companion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion. ACM, 815–816.

[31] Paul Piwowarski, Mitsuru Ohba, and Joe Caruso. 1993. Coverage measurement
experience during function test. In Proceedings of the 15th international conference
on Software Engineering. IEEE Computer Society Press, 287–301.

[32] Michael Sipser. 2006. Introduction to the Theory of Computation. Vol. 2. Thomson
Course Technology Boston.

[33] Margus Veanes, Peli De Halleux, and Nikolai Tillmann. 2010. Rex: Symbolic
regular expression explorer. In Software Testing, Verification and Validation (ICST),
2010 Third International Conference on. IEEE, 498–507.

[34] Gary Wassermann, Dachuan Yu, Ajay Chander, Dinakar Dhurjati, Hiroshi Ina-
mura, and Zhendong Su. 2008. Dynamic test input generation for web applica-
tions. In Proceedings of the 2008 international symposium on Software testing and
analysis. ACM, 249–260.

[35] Tao Xie, Darko Marinov, Wolfram Schulte, and David Notkin. 2005. Symstra: A
Framework for Generating Object-Oriented Unit Tests Using Symbolic Execution..
In TACAS, Vol. 3440. Springer, 365–381.

[36] Sai Zhang, David Saff, Yingyi Bu, and Michael D Ernst. 2011. Combined static
and dynamic automated test generation. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis. ACM, 353–363.

[37] Hong Zhu, Patrick AV Hall, and John HR May. 1997. Software unit test coverage
and adequacy. Acm computing surveys (csur) 29, 4 (1997), 366–427.

678

https://regex101.com/
https://doi.org/10.1109/ICSTW.2017.23
https://doi.org/10.1145/1871840.1871848
http//swtch.com/~rsc/regexp/regexp1.html
http//swtch.com/~rsc/regexp/regexp3.html
http//swtch.com/~rsc/regexp/regexp3.html
http://dl.acm.org/citation.cfm?id=2486788.2486925
http://dl.acm.org/citation.cfm?id=2486788.2486925
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/2568225.2568271
https://doi.org/10.1145/2377656.2377662
http://dl.acm.org/citation.cfm?id=1613715.1613719

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 How Regular Are Regular Expressions?
	2.2 Limitations of Code Coverage
	2.3 DFA Coverage Example

	3 Test Coverage Metrics
	3.1 Graph Notation
	3.2 Coverage Criteria

	4 Research Questions
	5 Study
	5.1 Instrumentation
	5.2 Coverage Analysis
	5.3 Artifacts for RQ1
	5.4 Artifacts for RQ2

	6 Results
	6.1 RQ1: Test Coverage of Regular Expressions
	6.2 RQ2: Coverage with Rex

	7 Discussion
	7.1 Opportunities for Future Work
	7.2 Threats to Validity

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

